Dave Young

COMPUTING WAR NARRATIVES: THE HAMLET EVALUATION SYSTEM IN VIETNAM

APRJA Volume 6, Issue 1, 2017
ISSN 2245-7755

CC license: ‘Attribution-NonCommercial-ShareAlike’.
Over the two decades following the French withdrawal from Vietnam in 1954, the United States found itself increasingly enmeshed in a war that evaded expectations. In order to fulfil their commitment to their stated policy of stopping the spread of the Soviet sphere of influence as outlined in the Truman Doctrine, the US had to invest heavily in sustaining their presence in the region. In anticipation that the fall of Vietnam to communism would trigger a chain-reaction of Soviet-backed governments rising to power across Asia (the so-called Domino Theory), a visible display of military presence gained a strong sense of urgency. What quickly became apparent to military strategists in the Pentagon was that this conflict did not follow their assumed ‘conventions’ of regular warfare: the heavy machinery of the US Military was destabilised by the networked nature of the Vietcong insurgency in South Vietnam. In his 1985 book War Without Fronts, Thomas C. Thayer describes how, despite its colossal human and machinic capital, the US Military was faced with a hindered ability to even accurately evaluate how the Vietnam war was progressing on a regional level, let alone contain the spread of communist influence (4). Without any headquarters and with networks of cadres operating across the rural villages and jungles of the country, it became difficult for the US Military to know where to concentrate its attention. The military strategists believed that the solution to this problem could at least in part be solved with machines. This approach, articulated in General Westmoreland’s concept of “the electronic battlefield”, can be more generally summed up as a systems-oriented perspective on conflict, where anything from supply chain logistics to the political disposition of rural villages can be quantified, managed, and controlled.

In this text, I will unpack the workings of a particular technological apparatus applied in South Vietnam during the war, contextualising it in the culture of systems-analysis which became prevalent in US defence strategy following the Second World War. This apparatus – called the Hamlet Evaluation System – was in formal operation from 1967 until 1973, and aimed to provide US Forces with a vital narrative of progress in their “pacification programmes” in Vietnam. With its disruptive use of computers, the immense scale and scope of its task, and its affordance of a managerial approach to warfare, this system raises a number of issues around the role of the computer as bureaucratic mediator – in this case, tasked with converting complex insurgencies into legible, systematic narratives. What kind of insights did it provide into the operations of the Vietcong insurgency? How does it fit into the wider ecologies of command and control in the US Military during the first few decades of the Cold War? As the Hamlet Evaluation System, almost fifty years after its inception, is still considered the “gold standard of [counterinsurgency]” (Connable 113), it remains an important case study for those trying to understand how computers structure the institutional bureaucracy of war, and how they are imagined as epistemological tools that can somehow reveal objective truths about the complex, dynamic reality of war.

Legible thresholds

The 1954 Geneva Accords, in addressing the new power vacuum in South East Asia following the final defeat of the French forces in Vietnam, came to a rushed agreement. Vietnam would be temporarily partitioned along the 17th parallel, leading to the creation of two states: the Democratic Republic of Vietnam, and South Vietnam. Democratic elections were planned to occur two years
later, after which the country was to be reunited under a newly elected, singular government. However, the 1956 elections never took place: knowing that Ho Chi Minh would win any popular vote, Ngo Dinh Diem – the South Vietnamese Chief of State – working in liaison with the US Government, decided to withdraw support. Vietnam thus remained in a suspended state of partition, caught between a century of French colonial rule and an apparently forthcoming new era of US proxy governance. It was these pre-existing conditions which laid out foundations for the asymmetric relationship between on one side the US Military and Government of South Vietnam (GVN), and on the other the various counter-powers fighting on behalf of the northern Democratic Republic of Vietnam – notably, the Vietcong’s political and military infrastructure. As growing numbers of US troops arrived in Saigon in the early 1960s and were mobilised around the country, an organised Vietcong insurgency was already well-established in the villages and towns all over South Vietnam. The US troops quickly found that they were not dealing with a unified, centralised enemy: they were dealing with disruptive threats which emerged through unpredictable guerrilla operations, flashes of combat in quiet villages or jungle roadways which could vanish as suddenly as they appeared. This was not bloc-against-bloc warfare, where oppositional forces engage in conflicts around fronts, nor was it as simple as being “without fronts” as Thayer suggests. Instead of describing the war according to these principles, in acknowledgement of the systems-oriented perspective that came to characterise this war, we can think of it as being constituted of a multitude of thresholds. The emergent nature of these thresholds posed a serious problem for US Military and GVN strategists, especially in rural districts throughout South Vietnam, and it was the task of mapping and predicting where they might emerge next that occupied many US Military strategists in Saigon.

This concept of the threshold finds its application in the strategies favoured by Robert McNamara, US Secretary of Defense from 1961-68. McNamara, a Harvard-trained economist famed for using “systems analysis” to revolutionise the ailing post-war Ford Motor Company, took a similar systems-driven approach to his role in government. Donald Fisher Harrison describes how McNamara’s approach to his position incorporated “business analysis techniques”:

McNamara’s early applications of computers to war were ground-breaking. Using computers as an analytical tool, he soon made fundamental changes in the department’s reporting techniques, as well as in the use of computer-generated data for decision making. (Fisher Harrison 20)

By the time McNamara was appointed Secretary of Defense, there in fact was already a burgeoning culture of systems analysis among scientists and engineers developing computers, the nuclear programme and experimental weapons. Outside the military, the practice of systems analysis could already be seen in the organisation of the corporate workplaces, manufacturing industries and communications infrastructures of the United States since the early twentieth century (Yates). However, it was the war emergency in the early 1940s that really set systems analysis to work in solving military problems, such as the design of anti-aircraft weapons and locating German submarines in the north Atlantic Ocean. What Peter Galison calls the “manichean sciences” – cybernetics, game theory, and operations research – emerged during this period to address strategic problems in military thought, and came to be regarded as powerful frameworks for
managing the unpredictable nature of the “cunning opponent” during the Second World War and beyond (234):

More active than the targeted, invisible inhabitants of a distant city and more rational than the hoardelike race enemy, this third version emerged as a cold-blooded, machinelike opponent. This was the enemy, not of bayonet struggles in the trenches, nor of architectural targets fixed through the prisms of a Norden gunsight. Rather, it was a mechanized Enemy Other, generated in the laboratory-based science wars of MIT and a myriad of universities around the United States and Britain, not to speak of the tens of laboratories in the countries of the Axis. (231)

It is no coincidence that the emergence of the manichean sciences were concurrent with the development of digital computing – both drew on and further facilitated a perspective of the world which was quantifiable in terms of logical and rational systems of control and communication. For instance, John von Neumann, one of the chief proponents of Game Theory, made important contributions to defence computing projects during the Second World War. During this period, computers had urgent problems to solve – problems posed by long-range ballistics, cryptography, submarine warfare, and the threat of the bomber plane. The availability of federal funding and the politically-motivated scale of ambition facilitated ground-breaking computing projects such as von Neumann’s MANIAC computer (Jacobsen 33). As the Cold War tensions heightened, continued research and development in new technologies was seen not just as desirable displays of capitalist innovation, but as absolutely vital to the management and prediction of threats from the Soviet Union. While, as outlined above, systems analysis was not necessarily new to the military as such, the appointment of McNamara and his advisors – the so-called Defence Intellectuals – to such high-ranking positions expanded its scope. It was lent a further legitimacy when it was made a central concern in forming policy and strategy in Vietnam. Evelyn Fox Keller’s writing, while on the subject of what she calls “cyberscience”, neatly epitomises the worldview of the Defence Intellectuals and the manichean scientists:

For cyberscientists, Life (especially corporate life, electronic life, and military life — the modes of life from which these efforts emerged and on which they were focused) had become far too unwieldy to be managed my mere doing, by direct action, or even through the delegation of “doing” to an army of underlings kept in step by executive order. (85-86)

As the cutting edge of digital computing advanced rapidly, its utilities expanded from just being labour-saving calculators to
becoming expansive multi-purpose data-processors, generating actionable information from vast quantities of inputted data. For example, the Semi-Automatic Ground Environment (SAGE), built by IBM for the US Air Force in the 1950s, was designed to manage the airspace of the United States. Its development, catalysed by the explosion of the Soviet Union’s atomic bomb in 1949, was relatively brisk considering its technical novelty. The SAGE system was online by 1960, receiving streams of radar information from a variety of arrays around the country, identifying crafts that were possible threats and tracking their movements. With SAGE came innovations in digital memory formats, operating systems, and screen interfaces that rendered data streams as legible thresholds that, when traversed, would immediately alert the system’s operators. In Closed World, Paul Edwards describes it as “the first large-scale, computerised command, control and communications system” (75), which although obsolete by the time it was finished, demonstrated the practical possibilities of defence computing and had an enormous influence on subsequent projects funded by the Department of Defense. It is important to note that, while SAGE was enthusiastically developed by teams of scientists and engineers, it was dismissed by some Air Force traditionalists for its defensive nature, the possibility of the project diverting funding from other Air Force projects, and its centralised position of command in the military hierarchy (Edwards 94-96). A CIA analyst, writing in 1960 on the “capabilities, prospects, and implications” of the computer and military projects such as SAGE, warned: “Not that computers and other [Electronic Data Processing] machines constitute any panacea for our ills; they are not glamorous Aladdin’s lamps to do our bidding while we recline at ease.” (Becker 7)

Pacification

The shock of the Soviet launch of their Sputnik satellite in 1957 and the grave implications for national security resonated in US President Eisenhower’s State of the Union address the following year: “The advent of revolutionary new devices, bringing with them the problem of overall continental defense, creates new difficulties, reminiscent of those attending the advent of the airplane half a century ago.”

In the address, Eisenhower, himself a General in the Second World War, acknowledged the necessity to establish new approaches to defence research. The newly created Advanced Research Projects Agency (ARPA, later becoming DARPA after being given the prefix Defense), furnished with a $10 million grant to start their research programme, became an important location for technological experiments and systems analysis. ARPA’s role in the early years of Vietnam centred on Project Agile, a Saigon-based research programme tasked with tackling the problem of the insurgency. Project Agile was to varying degrees responsible for the US Military’s defoliation programme — the destruction of the natural camouflage of the jungle canopy, and the invention of Agent

Figure 2: HES population control data by hamlet security rating, dated 30th April 1968 (Brigham 34).
Orange — a herbicide that poisoned arable soil and water sources, prohibiting future attempts at farming the land. Simultaneously, Project Agile was also intended as a key weapon in the battle for pacification, that is, the effort to win the “hearts and minds” of the Vietnamese and “pacify” the efforts of the insurgency. Agile’s strong-handed and often misguided approach to pacification is evident in the *Strategic Hamlet Programme* (SHP), where Vietnamese farmers were given financial incentives to move away from “Vietcong infested” areas to live in US-sanctioned regions, under protection of the GVN (Jacobsen 133). In doing so, it was hoped that “ARPA would collect enough information on strategic hamlets to be able to monitor their activity in the future” (Jacobsen 135), and “tie the villages into the network of government administration and control” (Hilsman). While the village was traditionally considered the lowest administrative unit in Vietnam, each village would typically be comprised of a number of discrete communities called hamlets. These hamlets could in fact vary significantly in size, from small clusters of houses surrounded by rice fields to whole urban districts, and with populations ranging from as few as 50 people to as many as 20,000 (Connable 114). This attempt to create safe havens and win the support of the Vietnamese was not as straightforward as anticipated, ignorant as it was to the communities it was attempting to displace. Dislocated farmers lost their cultural connection to their ancestral lands, and reportedly were underpaid for being relocated and forced to build fortifications during the “most important planting time of the year, which meant that many farmers had been unable to plant their own crops” (Jacobsen 135). An ARPA-funded investigation carried out during the programme’s lifetime which suggested this initiative was doing much more harm than good was rejected and subsequently “scrubbed” from the records, at which point a new, more favourable, report was commissioned (Jacobsen 136).

The SHP’s observation of specific communities and the production of new controllable zones for Vietnamese farmers was just one interpretation of what “pacification” could mean for the US Military and its research institutions. As Thomas Scoville notes in his history of pacification in Vietnam, the exact definition of the term in fact remained unclear throughout the war:

> There was never agreement among Americans in Vietnam on just what pacification was and how it might be achieved. Some saw it as controlling the population; others as winning the people’s allegiance. Some viewed it as a short-term military operation
aimed at quashing opposition; others as a long-term process of bringing, in addition to security, economic, political, and social development to the people. (3)

By October 1966, McNamara was seeking new ways to get a clearer picture of the counterinsurgency efforts in Vietnam, and asked the CIA to develop a system to measure progress – and regress, as the case may be – in the pacification programmes (Ahern 231). The CIA were brief in their response, quickly developing a proposal for what became known later as the Hamlet Evaluation System (HES): “Mandated on a Monday, brainstormed on Wednesday, and coordinated inside CIA on Thursday, the proposal reached Secretary McNamara on Friday. He approved it on the spot, after which it received pro forma review in the State and Defense Departments” (Ahern 233). The following year, the system was installed as part of a bureaucratic assemblage consisting of both military and civilian organisations. It was led by Civil Operations and Revolutionary Development Support (CORDS), and implemented by Military Assistance Command Vietnam (MACV), a branch of the US Military charged with responsibilities such as running psychological operations, aid programmes and pacification campaigns. As Ben Connable puts it, “MACV was the neck of the funnel for nearly all field reports on operations, intelligence, pacification, and other data categories” (99). In order to get a sufficiently high-resolution perspective on the narrative of the counterinsurgency, the designers of the system recommended that MACV collect data on a hamlet level, which ultimately amounted to over 12,000 hamlets.

The task of the HES was to quantify the pacification status in regions outside the cities by assigning security ratings ranging from ‘A’ (friendly) down to ‘E’ (contested) for each hamlet, the majority of which were situated in remote rural areas. MACV staff known as District Advisors were given an allocation of hamlets to be visited on a monthly basis, whereupon they would liaise with local chiefs and complete questionnaires rating the state of security and development of each particular hamlet. The original HES version had a total of eighteen questions, each with up to five possible answers. Subsequent reviews by the Simulmatics Corporation (de Sola Pool et al.), RAND (Sweetland), and ARPA (Prince and Adkins) appended new questions and altered the scope of responses. Typical questions varied from the degree of Vietcong presence in the area during different times of the day, to the number of households that own radios, to forms of economic activities local to the hamlet (see MACCORDS 303-336). The design of the Hamlet Evaluation System aimed to maximise efficiency, speed up reporting times, and enable the operation to be practicable on an almost national scale by implementing newly available computer systems: “Automated Data Processing is used in the HES to minimise the district advisors’ workload and also to facilitate the storage, tabulation, and analysis of the reported information” (Brigham 2). The quantity of data produced from the system is impressive:
Every month, the HES produced approximately 90,000 pages of data and reports. This means that over the course of just four of the years in which the system was fully functional, it produced more than 4.3 million pages of information, and each page may have contained ten, 20, or more discrete elements of data – perhaps 40 million pieces of data, as a round estimate. (Connable 120)

It is important to note that the HES was not the only data collection system in use by the US Military at the time. A collection of systems documented in the US National Archives in Washington point to a widespread systematisation of conflict, ranging from logistical control of supply chains to terrorist activity databases. A parallel programme to the HES, also run by CORDS, called Phung Hoang (or Phoenix Programme), sought to construct a list of individuals working for or sympathetic to the Vietcong and subsequently — according to the US Military euphemism — “neutralize them” (CORDS 1). According to Tim Weiner, the total number of Vietcong suspects killed in the Phung Hoang programme amounts to more than 20,000 “at a minimum” (394). Also in operation at the time were the National Police Infrastructure Analysis SubSystem (NPIASS) — a GVN-collated database of criminals — and the Pacification Attitude Analysis System (PAAS), which attempted to carry out opinion polls on the population of South Vietnam (see US National Archives).

Although working in very different environments, the Hamlet Evaluation System in essence was assigned a similar computational task to projects such as SAGE: to distil large quantities of information into actionable knowledge, and to do this over a sufficiently brief period of time such that defence strategists could develop a relevant tactical response. Humans might conceivably be able to do the calculations required, but the number of man-hours (government term) required to do so would make the task completely inefficient and the results likely irrelevant. Indeed, before the development of electronic computers in the later years of the Second World War, it was people – and most often women – who were the computers, brought into the war effort to work with mechanical calculators or do arithmetic by hand. Janet Abbate gives an idea of how a machine such as ENIAC, an example of an early digital computer, would speed up the labour of calculating ballistics firing tables: “To create a single firing table required a month of continuous work for either the Differential Analyser or a team of a hundred women” (16). However, the use of computers in the HES did not simply remove the need for manual labour – in fact, the task of data collection proved to be an arduous task, fraught with danger as well as logistical difficulties. The process of observing and recording each hamlet could not be automated, it had to be carried out by humans, vulnerable to ambush and prone to subjective bias as will be demonstrated below. Nevertheless, the novelty and importance of the computer as an instrument of war was not lost on the chief of CORDS. In a 1967 press briefing announcing the HES, Robert Komer hailed the system’s use of computers as a labour-saving device, as well as noting their analytical “flexibility”: “We can ask the computer questions on details among the 50 different facets and can get answers of any kind” (Komer “HES System” 3). Although being remarkable for its use of computers to automate analysis, the enormous amount of work required to first collect hamlet data and then render it as machine-readable should not be understated.

In its hyperlocal focus, the HES was in essence concerned with converting the
population of South Vietnam into discrete units whose perceived security could be managed, controlled, and sculpted through responsive GVN and US Military strategies. The social and political dynamics of rural communities were schematised, with behaviours and conditions becoming “thresholds” to be converted into data and subsequently analysed in myriad reports generated by IBM computers in Saigon. Automatically generated maps, surveys, and charts would be sent to the US and subjected to further analysis, their statistics being held up as evidence of progress at high levels of US Government (Tunney 1). Perhaps the most striking document produced by computer analysis was the Hamlet Plot, a printed map of South Vietnam with the security score of each hamlet displayed. The plot was “state-of-the-art, and facilitated the emergence of a new visual register” (Belcher 133). It would appear then, with the availability of novel registers such as the Hamlet Plot, that McNamara’s desire to increase the legibility of the war narrative had been achieved.

Not a precise thermometer

However, the HES was not without its critics. The idea that the Vietnam War could be understood as a scientifically manageable system was, similar to SAGE before it, taken with scepticism by senior Generals who believed in the intuitive “art of war”. They loathed the extra layers of bureaucracy that inevitably came with integrating complex military operations with hundreds of civilian computer analysts spread across Saigon and the continental US (Belcher 144). Furthermore, there was a question of who exactly was being evaluated by the HES, with some believing that to some degree “their own personal performance was monitored by McNamara’s computers” (Fisher Harrison 21). This suspicion was in fact partially true. HES metrics came to be a method of benchmarking and incentivising regional progress in the conflict, with senior strategists in the US setting targets for improving security and development ratings in hamlets across the country – targets which commanders were under great pressure to meet. In tape transcripts of a 1968 meeting between General Creighton Abrams with CORDS director William Colby, Abrams presses this point: “It may be that, under the pressure of goals and targets and so on that […] some have leaned a little bit over backwards to look at the better side of things […] but now’s the time you’ve got to look past the chart and it mustn’t be only A/B/C [hamlet ratings] and A/B in the HES report” (Sorley 288). He continues to state that “this government’s life depends on it being what [the HES] says” (288). This appetite for data drove further divisions between the subjective observations of advisors on the ground and the assumed “objective” narratives generated by the computers. The sheer quantity of labour required to meet the monthly demand for hamlet data, not to
mention the logistical complexity of the task, almost certainly contributed to a significant distortion of the data as it was collected. Given that a District Advisor might have upwards of 50 hamlets in their roster, how much time could they conceivably spend in each location on a monthly basis, and how accurate an insight into regional security and development would this provide in practice? William Colby himself indicates his awareness of the ambiguities of HES data, but nevertheless defends it as a useful tool: “We’ve been using it, and defending it, over the years. We’ve emphasised that we don’t think it’s a precise thermometer for the situation, but it’s been a very handy tool. It’s given us an idea of differences over time and […] space” (Sorley 367). An Army-commissioned and generally favourable review of the HES by the Simulmatics Corporation just one year into its operation claimed that, while the District Advisors did not self-report any tendency to upgrade ratings to show “progress” in hamlets under their command, found limited evidence of bias in monthly reporting. That said, the primary author of this report was Ithiel de Sola Pool, an MIT professor and founder of the Simulmatics Corporation, and an important figure in ARPA’s Project Agile as well as the Strategic Hamlet Program — not necessarily somebody who could be considered as an independent evaluator (Scott 377). He writes:

Without exception, the district advisors stated that they honestly have tried to reflect reality in the HES. Some respondents, however, acknowledged their general outlook affected their interpretation of “reality.” Four of the forty respondents tended to be optimistic and to view the apparent general trend of the Vietnamese conflict favorably. (de Sola Pool et al. 94)

A 1969 inquiry into the Hamlet Evaluation System by Senator John Tunney went much further, quoting one unnamed District Advisor who explained that, after downgrading four hamlets, he “was immediately hit with a barrage of cables from Saigon demanding a full explanation for downgrading them” and spent the next couple of weeks justifying the evaluation (8). The laborious process led the advisor to admit that “it may be a long time in hell before I downgrade another hamlet” (Tunney 8). Recent analyses of HES reporting by Connable and Belcher present a more generally problematic picture. Despite appearing on a superficial level to be providing crucial insights into the war narrative, the very data these insights were based on were at least partially corrupt, and its methodology was faulty:

Indeed, there is a two-sided struggle in the centralized assessment cycle: On one side, analysts fight to obtain, collate, and understand vast reams of decontextualized data while under intense pressure from policymakers and senior military leaders to show progress; on the other side, troops in the field are tasked with reporting data that often do not exist, in formats that make little sense, for objectives they do not understand or believe in, while also under intense pressure to show progress. (Connable 96)

A 1972 HES Review Committee memorandum is but one example of issues with District Advisor reporting, highlighting committee suspicions concerning “an unexpected, extraordinary upgrading of hamlets” and “sudden upgrading of long-term enemy strongholds” (Jones 3). The hamlet questionnaire itself also observed an optimistic bias, with questions phrased such that conditions appeared to be improving. Indeed, a dominant
preoccupation in the aforementioned ARPA (Prince) and Simulmatics (de Sola Pool et al.) reports attempted to address issues around bias and labour complexity.

The entire operational stack of the HES, from the Hamlet Chiefs right up to the top of the US Executive Branch – and not excluding the computers, algorithms, and the databases – constituted an unwieldy bureaucratic apparatus. In effect, it had more to do with legitimising a continued US engagement with Vietnam than functioning as the intended ‘neutral’ epistemological tool that would enable the strategists to read the battlefield like a manual. The Hamlet Evaluation System’s grandiose ambition to map the progress of the pacification programmes meant that its consequences were far reaching, influencing military strategy and policy while suggesting that conditions in the country were widely improving. For instance, its optimistic reporting would have implied that the $777 million dollars spent in 1970 on pacification was rewarded with real progress on the ground (Komer “Impact of Pacification” 19), or that search and destroy tactics were successfully bringing new regions under GVN and US influence. While the aforementioned examples of bias and data manipulation were not necessarily active intentions of the system, they were at least affordances of the complex administrative bureaucracy required to keep it in operation. But it is the “liveness” of the HES that is crucial to dwell on: it was an untested experimental apparatus, trialled in a highly complex and dynamic theatre of operations where its formula evolved over time at enormous expense of those who were subjected to it. As an experimental pacification tool, it was not alone: the HES was but one component in an assemblage of machineries all feeding in to one another, shaping strategy in response to perceived trends in the war narrative, and having tangible, violent effects on the lives of the Vietnam’s rural population. Robert Komer, the CORDS chief who excitedly announced the use of computers in the HES in 1968, wrote of the pacification programmes two years later: “Like most things in Vietnam, [pacification] has been cumbersome, wasteful, poorly executed, only spottily effective in many respects” (Komer “Impact of Pacification” 8). In carrying out their task of making emergent guerrilla tactics legible as part of some overarching strategic vision, these systems failed to approach the ontological question of what actually characterises the supposed “rational” or “obedient” subject in asymmetric warfare.

Giorgio Agamben writes: “We have then two great classes: living beings (or substances) and apparatuses. And between these two, as a third class, subjects. I call a subject that which results from the relation and, so to speak, from the relentless fight between living beings and apparatuses” (14). In the case of the Hamlet Evaluation System, the “living beings” who inhabited the rural hamlets of South Vietnam were subjectivised. What behavioural nuances could be lost to noise in the data? How can assumed “objective” data be produced out of a system that fundamentally relies on subjective observations, clouded by the fog
of war and distorted by bureaucratic pressures to attain targets? Purely as a machine that produced a “gold mine” (Komer “Impact of Pacification” 9) of actionable information about the insurgency, one could conclude that the Hamlet Evaluation System was successful. However, this understanding is to take a purely technocentric position, omitting the very real and violent political implications of the data contained within this “gold mine”. If the war was “a war for the control of the population” (Kalvyas and Kocher 337), the Defence Intellectuals worked with the concept of “population” as a technical abstraction that could be conveniently understood with algorithms and surmised in statistics, rather than as an amorphous form sustained and constituted by a dynamic and evasive social substrate. It was rather the particular reality of this technical abstraction which necessarily informed and facilitated McNamara’s Vietnam strategies, and which was also presented to the American public as evidence of “progress”. While some examples of contemporary analysis of the HES acknowledge its sophistication (see Kalvyas and Kocher 341), as a case study it raises crucial questions about the kinds of structural distortions that arise out of the application of systematic apparatuses in conflict scenarios. The notion that analysing “enough data” will lead to an increase in the “legibility” of asymmetric warfare must come with a critical caveat: it should be understood with relation to the administrative organisations that modulate their end-use and, perhaps to a significant degree, prefigure their consequences. For the present, analysis of the Hamlet Evaluation System identifies a number of fallibilities in the process of mass data collection, which bring to mind the “collect it all” mantras that characterise the counterterrorism strategies of the US and UK (Anon). In this respect, thorough analysis of the inner-workings of Vietnam’s “gold standard” (Connable 113) pacification programmes can afford us with a historically-sensitive mode of critique for their classified contemporary analogues.

Works cited

