Shaping Vectors
Discipline and Control in Word Embeddings
DOI:
https://doi.org/10.7146/aprja.v13i1.151234Keywords:
Word embeddings, Digital encoding, Societies of control, Large Language ModelsAbstract
This article investigates how the word embeddings at the heart of large language models are shaped into acceptable meanings. We show how such shaping follows two educational logics. The use of benchmarks to discover the capabilities of large language models exhibit similar features to Foucault’s disciplining school enclosures, while the process of reinforcement learning is framed as a modulation made explicit in Deleuze’s control societies. The consequences of this shaping into acceptable meaning is argued to result in semantic subspaces. These semantic subspaces are presented as the restricted lexical possibilities of human-machine dialogic interaction, and their consequences are discussed.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Pierre Depaz
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyrights are held by the individual authors of articles.
Unless stated otherwise, all articles are published under the CC license: ‘Attribution-NonCommercial-ShareAlike’.
The journal is free of charge for readers.
APRJA does not charge authors for Article Processing Costs (APC)