
This article investigates how the word embeddings at the heart of large language
models are shaped into acceptable meanings. We show how such shaping follows
two educational logics. The use of benchmarks to discover the capabilities of large
language models exhibit similar features to Foucault’s disciplining school enclosures,
while the process of reinforcement learning is framed as a modulation made explicit
in Deleuze’s control societies. The consequences of this shaping into acceptable
meaning is argued to result in semantic subspaces. These semantic subspaces are
presented as the restricted lexical possibilities of human-machine dialogic
interaction, and their consequences are discussed.



When following the direction from man towards programmer in a space composed of
word vectors, computational linguists Bolukbasi et al. encountered a problem — the
resulting value when starting from woman was homemaker (Bolukbasi et al). In order
to correct this mistake (programmer should be to woman as programmer is to man),
they developed algorithms to "de-bias" word embeddings — the vector
representation of text — and thus provide a di�erent configuration of words that
would be considered less sexist.

Word embeddings are ways to organize words in space such that their proximity or
distance to other words holds semantic information. However, an unwanted proximity
or distance might be interpreted as bias by researchers and users alike (Noble;
Bender et al; Steyerl), and can be understood as a sense-making problem, in which
a given semantic output does not correspond to the expectation. And yet, as
Bolukbasi and their colleagues show, it is possible to reconfigure semantic fields
such that they make more acceptable sense. This article investigates how word
embeddings, as used in large language models (LLMs), are the result of shaping
processes, and how these shaping processes are akin to educational processes.

We define shaping processes as the di�erent steps in the development of a
technical artefact, in order to modify both its function and user perceptions. This
article focuses on two specific processes, benchmarking and reinforcement learning,
to highlight the overall tendency in which such shaping processes inscribe
themselves. As such, the central question we address is: under which logic do
shaping processes take place? How are technical processes implementing such
logics in order to discover meaning-making capabilities in LLMs? And who
determines the kind of sense that is being made by a large language model? We
hypothesize that these processes can be productively analyzed through the dual
lens of discipline and control, as put forth, respectively, by Michel Foucault and
Gilles Deleuze, particularly in their discussion of education; through this, we show
that shaping logics, when it comes to generative cognitive technologies, influence
the development and assessment of meaning-making abilities both in the machine
and the human.

We begin by exploring how meaning can be encoded digitally by making the
relationship between syntax and semantics in computer environments explicit. By
comparing binary encoding and vector encoding, we highlight the complexities of
the latter, particularly when assessing meaningfulness. We then trace how those
vectors are being shaped — that, is being rendered operationally meaningful —
within LLMs. Specifically, we pay attention to two particular steps in the creation
process of an LLM: benchmarking and reinforcement learning. We highlight how
these techniques, a combination of discipline and control, contribute to normalization
and standardization of meaning, but also from its modulation and adaptation, and
result in semantic subspaces.



Discussing Alan Turing’s proposal of machine intelligence as an educational
problem, we conclude by turning to theories of co-construction of intelligence
(Bachimont; Stiegler) to sketch out, through examples of linguistic normalization,
hallucinations, and prompting, how such word embeddings can operate logics of
control themselves.

The question of discursive communication in technical systems is inseparable from
the question of encoding. Whether as frequency-modulated hertzian waves, pixel
arrays, or smoke clouds, di�erent encodings enable di�erent discourses (Postman).
This section focuses on the shift from one encoding to the other and its semantic
implications, looking at both the bit and the vector as a means to represent
information in digital environments and highlighting how sense-making shifts from
one to the other.

Before the electrification of computers, the use of binary distinction greatly
facilitated automation, from the programming of textile patterns in jacquard looms to
the processing of punch cards in census exercises (Ceruzzi). In the context of
mechanical work, the binary sign’s only significant property is that it has two
mutually exclusive states; from these states, it becomes possible to encode
representation (in the form of binary digits) and action (in the form of Boolean
logic). Binary is entirely decontextualized, and it does not matter whether the binary
sign is represented as a pair of 0/1, red/blue, low/high, cold/hot, as long as it is a
disjointed pair.

While enabling flexible representation, this lack of context requires additional
cognitive apparatuses, such as references and conventions against which a
particular configuration of binary can be checked. Like all codes, there is a need for
a cipher to access the meaning encoded in the binary representation (Kittler). From
01001010 as input, the convention of 4-delimited base 2 encoding allows us to
retrieve decimal numbers, here the number 74. Once such number has been
decoded, we can further decode it into a letter, following here the reference table of
the American Standard Code for Information Interchange (ASCII), in which case the
number 74 will be interpreted as the upper-case letter J. An equivalent for actions
encoded in binary are truth tables, establishing the results of particular
combinations of Boolean logic operations.

This decontextualized binary sign was contemporary with another
decontextualization: that of the message. Claude Shannon’s 1948 theory of
communication famously proposed that meaning was irrelevant when calculating the
means of communication and that one should, therefore, focus on maximally faithful
recreation of the input signal, avoiding any kind of noise interference (understood as
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the corruption of the initial value of the transmitting medium) (Shannon). Encoding
information through specific signs, whether Morse code or binary code, lent itself
particularly well to this paradigm of information transmission. However, such a
system holds a second assumption: it assumes the meaningfulness of the source.
Indeed, in order to decode a message under Shannon’s theory at all, one must
presuppose there is sensical message to decode.

While binary encoding might be first seen as a decontextualized sign, as a technical
object, it also exists in a network of relations, involving at least reference documents,
transmission media and human agents that are all necessary for it be productively
operationalized. Such productivity is achieved specifically by setting aside meaning
to focus on syntax.

From the 1950s until the 2010s, the binary digit remained the dominant form of
encoding information in digital systems. Throughout the 1970s, though, another form
appeared, known as Vector Space Models (VSM). Originally proposed by Gerald
Salton, this technique for information retrieval relied on the key insight, proposed by
linguist John Firth in 1957 that “[we] shall know words by the company they keep”
(Firth 12), hence departing from an essentialist view of language, towards a
pragmatic one, in which the context of a given word should be part of its encoding
(Salton et. al., 1975). Such encoding became particularly popular in broader digital
information system after Yoshua Bengio and his team combined it with neural
network algorithms at the dawn of the twentieth century (Cardon).

A vector is a mathematical entity that consists of a series of numbers grouped
together to represent another entity. Often, vectors are associated with spatial
operations: the entities they represent can be either a point or a direction. In
computer science, vectors are used to represent entities known as features,
measurable properties of an object (for instance, a human can be said to have
features such as age, height, skin pigmentation, credit score, and political leaning).
Today, such representations are at the core of contemporary machine learning
models, allowing a new kind of translation between the world and the computer
(Rieder).

In machine learning, a vector represents the current values of a given object, such
that a human would have a value of 0 for the property “melting point”, while water
would have a value of non-0 for the property "melting point". Conversely, water
would have a value of 0 for the property "gender", while a human would have a non-
0 value for that same property. However, this implies that each feature in this space
is related to all the other dimensions of the space: a human could potentially have a
non-0 value for the property "melting point". Vectors are thus always containing the
potential features of the whole space in which they exist and are more or less
relatively tightly defined in terms of each other.



If binary enabled a syntactic exchange (everything can be encoded as a series of
0s and 1s), vectors enable a semantic exchange (everything can be described in
terms of everything else). Combining vectors entails a more malleable manipulation
of meaning throughout lexical fields. As a vector goes from Berlin to Germany, it
represents the concept capital city (Guo et al).

Because features exist in relation to one another, and meaning is constructed
through the local similarity of vectors, semantic space both flexibly stores meaning
(each number in a vector can subtly change without a�ecting overall meaning) and
systematically retrieves it (all vectors exist in the same dimensions).

The nature of meaning di�ers depending on encoding – but this is by not exclusive
to digital inscription systems. For instance, Jack Goody’s work on lists and Bruno
Latour’s on perspective, both suggest epistemological consequences inherent in the
choice of one particular syntactic system over another (Goody; Latour). While
binary encoding allows a translation between physical phenomena and concepts,
between electricity and numbers, and while Boolean logic facilitates the
implementation of symbolic processing, vectors open up a new perspective on at
least one particular level: the spatial dimension of their semantics.

The breadth of the data encoded, packaged in online corpora such as Common
Crawl, is valuable insofar as it is mostly syntactically correct natural language.
However, it does not follow that its recombination by way of large language model
generation will be sensical because the source of such recombination cannot be
attributed to a meaningful agent. The problem with language generation based on
vector encoding is, therefore, that meaning is ontologically uncertain because it is
statistical (software engineers tried to wrangle uncertainty out of the electrical
circuits by forcing the continuous voltage into the discrete binary). Such uncertainty
brings the acceptability of meaning into question — which can have either
potentially boring or dramatic consequences. While binary encoding limits the
acceptability of meaning to faithful signal reconstitution, vector encoding gives it a
more complicated dimension.

Reconstituting meaning from binary encoding has always been a clearly defined
problem, involving only mathematical reconstitution of the original message.
Correctness of meaning, on the other hand, began as a computer-syntactic
problem, but shifted with vectors to become a human-semantic problem.

We now turn our attention to techniques deployed by producers of LLMs to shape
word embeddings of LLMs into models capable of meaningful output. After looking
at the use of benchmarks for capability discovery, we argue that these processes



operate as a form of discipline, as theorized by Michel Foucault. Then, we turn to
reinforcement learning as an example of such shaping, but this time through the lens
of a form of control, following Gilles Deleuze. We then conclude this section by
reframing training in terms of education, drawing on Alan Turing’s seminal paper,
“Computing Machinery and Intelligence” (1956).

Originally, a digitally encoded message was considered intelligible when it
successfully compiled and behaved according to specification. But as programming
became an engineering discipline (Campbell-Kelly), engineers’ focus on metrics,
such as e�iciency and reliability, ushered in new ways of qualifying the value of a
program as a productive object. From the 1970s on, benchmarks emerged as
reproducible tests to signal entities’ comparative productivity. Through standardized
procedures, they measure and rank, for instance, the time taken to sort lists of items,
the number of triangles that can be drawn at a given frame rate, or the temperature
of a CPU chip when processing a certain set of tasks.

Conventional engineering metrics, such as speed, play only a minor role in
determining the quality of today’s large language models. While contemporary
benchmarks are still centered around the concept of performance, it is no longer
measured on discrete machine tasks, but rather on subjective human ones —
focusing on content rather than form.

Engineering benchmarks for LLMs thus take on a di�erent dimension, involving
conceptual assessments, rather than technical e�iciency. For instance, the General
Language Understanding Evaluation (GLUE) (Wang et al) benchmark is a test for
machines that assesses performance in domains such as lexical semantics,
predicate-argument structure, logic, as well as knowledge and common-sense.
These tests have a normative power, deciding the extent to which something is
correct or not, and are thus part of disciplinary technologies, i.e., technologies that
rely on the creation, supervision, and maintenance of norms (Galloway). Here,
benchmarks enable engineers and other users to determine the relative performance
of one LLM compared with others.

The recent application of LLMs to other kinds of benchmarking tests, namely
standardized tests designed for humans,suggests a parallel between the logic of
benchmarking and that of education. In the past years, LLMs have successfully
passed the Chartered Financial Analyst exam (I & II), the Bar exam, the SAT, the
GRE, the Biology Olympiad Semifinal Exam, the Certified and Advanced Sommelier
Exam, and the United States Medical Licensing Exam (Varanasi). As well as
assessing LLMs' capabilities, such tests allow for the adjustment and regulation of
cognitive processes, and act as value judgments for the meaningfulness of an
output produced by an agent whose capabilities are to be asserted, whether human
or machine-simulated. Referring to the educational system of the 20th century,
Foucault writes:



These 'regulated and concerted systems' fuse together the human
capacity to manipulate words, things and people, adjusting abilities
and inculcating behaviour via 'regulated communications' and 'power
processes', and in the process structuring how teaching and learning
take place. (Foucault 218-219)

At the heart of the practice of teaching is a defined and regulated relation of
surveillance that acts to improve the e�iciency of its subject. The power process
here is that of the standardized test, as it measures and compares decontextualized
performance (Ryan). This happens through normalization, the shaping of entities in
order to make them comparable and rankable, an operation already at play in
engineering benchmarks (Heaven). One key di�erence, however, is that the
discipline that Foucault describes in the school primarily aims at disciplining bodies,
particularly in terms of sexuality, whereas the disciplining of vectors happens on the
other side of the cartesian distinction which underpins mainstream artificial
intelligence research.

Adherence to standardized benchmarks is not the only way that researchers shape
acceptable meaning in LLMs. Once a certain kind of technical performance is
confirmed, its social performance must also be assessed and eventually modified.
To do that, there is a feedback mechanism, involving both negative and positive
signals.

Word embeddings underpinning LLMs are malleable: LLMs can propose di�erent
semantic outputs based on the di�erent weights and attentions (Guo et al). A
notorious example of such malleability is that of Microsoft’s chatbot, Tay, who
remodelled itself to generate more discriminatory and o�ensive content after just
one day interacting with social media users (Glance, 2016). While benchmarks
assess generic capabilities and output quantitative information about the
performance of an LLM, they only assess acceptability on a factual and syntactical
level, and not on a social or moral level. Additionally, as a commercial product, its
outputs must comply with particular legal frameworks that specify what can and
cannot be said. Beyond standardization, this then requires LLMS to adapt the
semantic space they encoded to ad hoc requirements.

Such modulation happens through processes known as reinforcement learning,
whether with human or AI feedback. Reinforcement learning judges each output
against standards to support subsequent optimization. It involves having a trusted
authority (such as a human who has been told what to expect from an ideal LLM
output) provide feedback to the training model to reinforce certain semantic
features (e.g., preventing any output that is deemed discriminatory, copyright
infringement, or harmful to the user) (Kaelbling).



While benchmarking focused on abstract comparability through normative testing,
reinforcement learning involves more subjective normalization of meaning through
feedback and iteration in order to align the model with what is considered a legally,
morally, and socially acceptable meaning. Such logic updates a disciplinary
approach to undetermined behaviour and enters the realm of control. In his 1992
essay, Gilles Deleuze describes a new kind of era, ushered by a new kind of
machines — computers — that would also suggest new mechanisms to govern
individuals. This era of the society of control relies on adaptability, modulation, and
deformation in order to best match the desired situation. Deleuze writes:

[...] the di�erent control mechanisms are inseparable variations,
forming a system of variable geometry the language of which is
numerical (which doesn’t necessarily mean binary). Enclosures are
molds, distinct castings, but controls are a modulation, like a self-
deforming cast that will continuously change from one moment to the
other, or like a sieve whose mesh will transmute from point to point.
(Deleuze 3)

During reinforcement learning, the word embeddings of a LLM are shaped into a
particular meaning through ad hoc interfaced actions such as "thumbs-up" or
"thumbs-down", which are subsequently backpropagated through the weights of the
network, slightly re-arranging embeddings into a semantic space whose landscape
better matches the expectations of the judging entity. Furthermore, such a process
can be conducted iteratively, blurring the distinction between what is in training and
what has been trained — Deleuze identifies a similar change in the human
educational process, wherein education is replaced by continuing education and the
educated subject can become a uniquely shaped object — an objectile (Savat). The
objectile is the result of a unbounded modulation, rather than the singular structural
shaping of a sculpture. Instead of the standard formatting of foucaldian educational
institutions, Deleuze suggests the dawn of a new mode of education which involves
personalized frames of action for each subject, an individualized, yet clearly
controlled subject.

The question of education has been asked since the beginning of contemporary
history of AI research, considering that education was a crucial step in establishing
the intelligence of a subject.

In Alan Turing’s "Computing Machinery and Intelligence", he concludes his
investigation into whether machines can think by focusing on how to make them do
so. Drawing parallels from the development of human cognition, he identifies three
components: the initial conditions (genome for humans, model architecture for
LLMs), the formal education (schooling for humans, training for LLMs), and
epiphenomenal events (interactions for humans, reinforcements for LLMs).



Such formal education for LLMs stresses learning by example (Campolo) and
capability discovery through human-context benchmarks, either in the form of
specialized machine learning tests (e.g., GLUE, BLUE, LMSYS) or broader "real-
world" knowledge tests (e.g., the SAT, MCAT, or LSAT).

However, the educational process within an institutional setting does not, as
Foucault has shown, limit itself to the transfer of knowledge, but involves also the
normalizing of bodies and minds. Since LLMs do not have a corporeal incarnation
beyond matrices of weights written to files and globally-networked data and
compute centers, it is on the "mind" of the LLM that the educational process of
benchmarking and reinforcement learning operates.

Critically inspecting the two educational logics at play in the shaping of vectors —
benchmarking as discipline, reinforcement learning as control — highlights two
concerns. First, the harmonization of acceptability standards through benchmarks
determines the narrow kinds of intelligence which can be expected when interacting
with models (i.e. scholarly, academic, bookworm-ish, test-oriented, to the extent
that some researchers have started to look into ways to prevent LLMs from cheating
on tests (Zhou et al)). For instance, as of 2024, LLMs tend to perform relatively
poorly on non-verbal reasoning (Potter). Since the passing of those assessments
operate as a sort of test, we can subsequently anticipate the kind of intelligence
that those models display based on their assessment techniques. Second, the fine-
tuning of acceptability through reinforcement learning takes a performing academic
model resulting from the passing of benchmarks, and presents to the end-user a
refined version with particular values embedded in them. Due to the limited amount
of companies being able to deploy such reinforcement learning, these values then
have similar consideration across the globe (Awad et al). Not only is the factual
intelligence standardized, but the values ascribed to those facts is equally
controlled.

Deleuze’s conception of continuous education as the on-going shaping of
intelligences and abilities implies that the structural distinction between what is
inside the enclosure and what remains outside is blurry at best. According to the
logic of control, the shaping of LLMs does not stop before release to the public.
Continuous, user-provided feedback and software updates constantly re-shape
their word embeddings (Gao). This last section investigates the potentially shifting
positions of tested and tester once LLMs are deployed to — and interacting with — a
broader audience.

We take the position here that all intelligence is, to a certain extent, artificial, insofar
as it embedded in technical artifacts and symbol systems, as suggested by



historians and philosophers of technics (Leroi-Gourhan; Stiegler; Bachimont).
Technical apparatuses help us think through problems aided by the use of specific
cognitive organizational devices, such as lists, tables, or formulas, as shown by Jack
Goody on his work on graphical reason. While Goody interprets these techniques as
a means of organizing representations of the world, Stiegler conceptualizes these
technologies as tertiary retentions in which the memories of things and practices are
externalized and reified into technical artefacts. In both cases, the technical written
artefact is co-constructive of thought.

Digital technology is no exception. Its flagship artefact, the digital computer,
exhibits properties such as modularity, translation, computation, connection, and
simulation (Manovich), cognitive operations that, by reorganizing the formalities of
the concepts they manipulate, also change our understanding of these concepts
(e.g.. digital technologies allow us, for the first time in the history of humankind, to
copy a text without reading it). Electric-symbolic encoding of meaning thus has an
influence on how we understand and make sense of the world.

Attending specifically to texts that exist first and foremost within a digital eco-
system, such as websites, digital documents (either in plaintext or in formats such as
.PDF, .DOCX, .ODT or .MD), or social media messaging, we can follow Alexandra
Saemmer to consider the computext, which is a kind of text that includes "both the
algorithms operating weights and calculus on the traces left by the users, as well as
the traces themselves, organised in databases" (Saemmer). Programming,
considered as a technique providing the background for the dynamic evolution of
meaning, already hints at the fact that software code is a writing of writing.
Similarly, “computexts frame and guide the writing process; however, the user no
longer writes in these tools, but literally writes with them” (Saemmer).

We understand technologies, whether physical or cognitive, to be points of
integration in a broader environment and means of interaction within such
environments (Hayles). In the case of LLMs, the environment is not just that of
academic research, corporate investment, material infrastructure, raw datasets, and
mainstream rhetorical discourses whose networked interaction have brought into
being this specific technology, but also the (semantic) environment created within
such kind of technology.

The post-processing of lexical fields in computational systems has been thoroughly
researched in the context of search engines (Sack), social media (Saemmer), and
word-processing (Kirschenbaum). Nonetheless, the way vector-encoded LLMs
a�ect our linguistic and discursive practices is still underdeveloped, and we sketch
out here some threads of how they might do so.

As LLMs retrieve information from their word embeddings, they navigate semantic
spaces. However, such a retrieval of information is only useful if it is meaningful to
us, the users; and in order to be meaningful, it navigates across vectors that are in



close proximity to each other, focusing on re-configurable, (hyper-)local coherence
to suggest meaningful structuring of content (i.e., guessing the next word that is the
closest to the current word based on the path already travelled). The proximity (or
distance) of vectors to each other is therefore essential to how the LLM output is
perceived as intelligible to us. Meaning is no longer created through symbolic-
logical combinations, but by spatial proximity in a specific semantic space. Because
proximity of certain tokens involves distance to others, this implied process of
exclusion can be described as a subspace, one in which some statements are more
likely to be output than others.

To illustrate one of the features of such spatial organization of meaning, we can pay
attention to the phenomenon of so-called "hallucinations", textual or visual
propositions that are considered by the user to be inacceptable with respect to the
"ground truth" (the concept in machine learning referring to the base of facts from
which reasoning should start). This occurs whenever LLMs suggest something that
is considered slightly too remote from such truth, or reality, and yet still adjacent to
it. The hallucination is an approximation, in the sense that it is only a proximity to
the syntactic configuration that would yield a semantic load grounded in reality.
User interactions with hallucinating models thus redraws the line between fact and
fiction, as text becomes a version of itself, moving from mechanical print to quantum
spatialization. While the content seems realistic, and its syntax may well be
semantically correct and convincing, the trust users have in the output of the system
can only be superficial (Förster).

Second, the restitution of training data and processes contributes to highlighting (or
hiding) particular pieces of information. Models trained by corporations that are
particularly attuned to a restrictive notion of copyright (e.g., Google, Microsoft,
OpenAI) prevent any replication of styles or creations by artists (or their
descendants) who might be able to initiate a lawsuit. LLMs are also prevented from,
for instance, providing any expression of personal preference. Previous models
based on reinforcement learning, like Microsoft’s Tay, have shown that they are not
restrained by contextual social cues such as moral and legal standards. No longer
treating text as a value-less mass, such examples of socially-embedded models,
insofar as they are consumer products, are explicitly refusing to enter certain
semantic spaces. Here, the reinforcement learning's disciplining of embeddings is
made clear. By prefacing their answers with the proposition "As a large language
model..." (announcing a constraining of the output), the LLMs explicitly enact a
techno-political framing akin to a political aesthetics, in which what is visible and
what is hidden are determined by their political nature (Rancière).

Things become somewhat murkier when the LLM does not acknowledge this
shaping of the semantic space. In the case of the image generation model RuDall-E,
developed and trained by Russian software engineers, it is impossible to prompt the
model to generating images of a pro-European revolution in Ukraine or any visual
references to the on-going war in Ukraine (Dubow). Here, it is no longer merely
forbidden to be express these outputs in a straightforward manner, but rather pre-



emptively foreclosed. We can qualify these di�erent shapings, some through
reinforcement learning, some through initial training data, as the creation of
subspaces, specific configurations of word embeddings, one in which attention is
forced towards particular centers of gravity. The emerging practice of "prompt
engineering" consists of providing LLMs with an initial semantic configuration
through written instructions. This "prompt engineering" can be conceived as
explicitly directing the LLM's attention towards specific subspaces (e.g., providing a
prompt like "Drawing on your expertise as a…" or "You are great pedagogue. Explain
to me…"). In this case, end-users harness the malleability of subspaces by deploying
technologically-adapted language to shape the navigable space of embeddings into
a configuration that best meets their needs. However, prompts can also be entered
at the system level, either by the technology company itself, a corporate re-brander
of a white-label system, or even by individual power users on local machines. These
system prompts exert another shaping of the semantic space that occurs in-
between the user's final prompt and the model's ultimate output. Such a practice
means that institutions or superusers are using access to the model re-orient
answers, and whose experience in training it grounds their perceived ability to
decide on the semantic subspaces from which a linear answer should be drawn. End
uses assume that an LLM draws on all of its training to produce an answer, and yet
it only operates on a partly visible subset.

Vector embeddings as a new form of encoding enables new ways of shaping the
content of language. Particularly, they add a layer of self-reference to digitally-
encoded language (since words and tokens make sense in the context of other
words and tokens) and of uncertainty (since the origin of a given output is no longer
a given in the process of decoding meaning). In order to reconstruct semantics from
syntax generation, two main processes are involved in the shaping of semantic
spaces.

We have shown how this shaping operates through two logics. The disciplinary logic,
in a slide from engineering benchmarks towards educational benchmark, uses
external standards to assess the productive performance of the language models.
Such a disciplining process takes on modular features through the controlling
process of reinforcement learning. By providing feedback and examples to reach a
configuration that yields acceptable outputs. The control logic, drawing on the
malleability of software, uses fine-tuned continuous adjustments to validate what is
acceptable or not at a value-level. Both of these logics are akin to how standardized
test in human education establish normalized knowledge practices, and how
continuous education ensures a new kind of framing in computer-powered societies.
Ultimately, these processes ultimately narrow down the frame of expressivity and
semantic combination of the LLM.

Finally, we sketched out how such combination of discipline and control in shaping
word embeddings can a�ect users, by suggesting that linguistic interaction only



takes place in semantic subspaces. Through dialogue, the user probes the spatial
configurations of meaning, but the exact topology of these configurations
nonetheless remains elusive, and can thus impact what can be said, and – for the
first time in the era of computation – even what can be imagined.
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