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Algorithmic regulation of everyday life, in-
stitutions and social systems increases with 
little oversight or transparency, and yet usu-
ally with significant social outcomes (Angwin 
et al.; Pasquale). Therefore, the need for an 
‘ethics of algorithms’ (Ananny; CIHR) and 
‘accountability’ of algorithms (Diakopolous) 
has been raised. The “constellation of tech-
nologies” we have come to refer to as ‘artifi-
cial intelligence’[1] (Crawford and Whittaker) 
enable an anxiety that sits alongside the 
financial speculation, experimentation and 
entrepreneurial enthusiasm that feeds the 
Silicon Valley gold rush of ‘innovation’. How 
can machine intelligence optimise its deci-
sion-making and avoid errors, mistakes and 
accidents? Where machines are not directly 
programmed but learn, then who or what is 
accountable for errors and accidents, and 
how can this accountability be determined?

This paper is based on driver-less car[2] 
technology as currently being developed by 
Google[3] and Tesla, two companies that am-
plify their work in the media. More specifically, 
I focus on the moment of real and imagined 
crashes involving driver-less cars, and argue 
that the narrative of ‘ethics of driver-less 
cars’ indicates a shift in the construction of 
ethics, as an outcome of machine learning 
rather than a framework of values. Through 
applications of the ‘Trolley Problem’, among 
other tests, ethics has been transformed into 
a valuation based on processing of big data. 
Thus ethics-as-software enables what I refer 
to as big data-driven accountability. In this 
formulation, ‘accountability’ is distinguished 
from ‘responsibility’; responsibility implies 
intentionality and can only be assigned to 
humans, whereas accountability includes a 
wide net of actors and interactions (in Simon). 
‘Transparency’ is one of the more established, 
widely acknowledged mechanisms for ac-
countability; based on the belief that seeing 
into a system delivers the truth of that system 
and thereby a means to govern it. There are 

however limitations to this mechanism in the 
context of algorithmic transparency (Ananny 
and Crawford). This work does not begin 
with a definition of accountability, but is part 
of a larger body of ongoing work that asks 
how accountability may be defined anew 
in a context where human and non human 
agents are in interaction.

This paper starts by looking at a recent 
crash involving a Tesla semi-autonomous 
car, and then examines literature around 
aviation crashes as a body of work that 
narrates how accountability in complex 
vehicles human-machine systems has been 
approached. This literature shows that es-
tablishing accountability is difficult because 
of the dense entanglements between human 
action and machine agency; that identifying 
the actors and events involved in a crash 
include complex chains of human and non-
human agents. However, in the development 
of the driverless car, machine learning is 
being used to practically pre-empt crashes. 
I show that ethics becomes a framework to 
guide the development of machine learning, 
and thus in doing so sets up linear paths of 
accountability: if the machine can minimise 
human error by learning how to respond 
to a vast number of crash scenarios, then 
accountability becomes something much 
easier to un-entangle. However, this is the 
ambition for a fully autonomous consumer 
vehicle, which does not yet exist, and is un-
likely to for at least the next ten years. Based 
on their documentation of driverless car 
testing and crashes, Brandon Schoettle and 
Michael Sivak conclude that the most risky 
period is that of transition from conventional 
driving to driverless cars. Moreover, industry 
predictions suggest that the insurance in-
dustry could be transformed by autonomous 
driving, moving to a model of offering cover-
age of technical errors rather than personal 
liabilty, much like cruise ships and airlines 
(Bertoncello and Wee). Thus I conclude 
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that there is a pressing need to confront 
machine learning as it is being applied to the 
new framing of ethics-as-accountability; and 
consequently develop new considerations of 
accountability in terms of, and building on, 
the reality of entanglements between human 
and machine agents.

Of Tesla and other crashes

In May 2016, an ex-US Navy veteran was 
test-driving a Model S Tesla semi-auton-
omous vehicle. The test driver, who was 
watching a Harry Potter movie at the time 
with the car in ‘auto-pilot’ mode, drove into 
a large trailer truck whose white surface was 
mistaken by the computer vision software 
for the sky. Thus it did not stop, and went 
straight into the truck. The fault, it seemed, 
was the driver’s for trusting the auto-pilot 
mode, as the company’s condolence state-
ment suggests:

It is important to note that Tesla 
disables Autopilot by default and 
requires explicit acknowledgement 
that the system is new technology and 
still in a public beta phase before it 
can be enabled. When drivers activate 
Autopilot, the acknowledgement box 
explains, among other things, that 
Autopilot “is an assist feature that 
requires you to keep your hands on 
the steering wheel at all times,” and 
that “you need to maintain control and 
responsibility for your vehicle” while 
using it. Additionally, every time that 
Autopilot is engaged, the car reminds 
the driver to “Always keep your hands 
on the wheel. Be prepared to take over 
at any time.” The system also makes 
frequent checks to ensure that the 
driver’s hands remain on the wheel 

and provides visual and audible alerts 
if hands-on is not detected. It then 
gradually slows down the car until 
hands-on is detected again. (Tesla)

Tesla goes into detail to clarify that the 
human is assumed to be in control even 
though ‘auto-pilot’, familiar to anyone who 
has been up in an airplane, implies that the 
machine is in control. This confusion over the 
meaning of auto-pilot becomes a critical mo-
ment to begin to think about the relationship 
between the human operator and a complex 
machine and how challenging it becomes 
to identify responsibility for errors. The lit-
erature from aviation crash histories offers 
some valuable insights in this direction, and 
suggests that responsibility for a crash has 
never been easy to ascertain.

The history of aviation crashes shows 
that human error tends to be cited as the 
most common reason for accidents; moreo-
ver, there is a tendency to “praise the ma-
chine and punish the human” for accidents 
and crashes (Elish and Hwang). Looking 
specifically at the history of the role of autopi-
lot, scholars find that even though there has 
been increasing automation in the cockpit, 
the responsibility for accidents remains with 
human pilots (10).

Peter Galison finds that identifying 
the cause of an aviation accident can be a 
Byzantine exercise. Examining narratives 
of aviation crashes, he finds that there is a 
deep entanglement in accounts of accidents 
between human actions and the perceived 
agency of technologies, a “recurrent strain 
to between a drive to ascribe final causation 
to human factors and an equally powerful, 
countervailing drive to assign agency to 
technological factors” (4). Galison finds that 
in accidents, human action and material 
agency are entwined to the point that causal 
chains both seem to terminate at particular, 
critical actions as well as radiate out towards 
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human interactions and organisational cul-
tures (4). Yet, what is embedded in unstable 
accident reporting is the desire for a “single 
point of culpability” (Brown 378), which never 
seems to come.

Galison finds in these multi-causal 
accounts that there has been a gradual 
move away from individual action towards 
examining “mesoscopic world[s] in which 
patterns of behavior and small-group 
sociology could play a role” (37). A good 
example of the role of small-group sociol-
ogy comes from Diane Vaughan’s landmark 
ethnography of the Challenger Space 
Shuttle crash. She finds that the crash was 
caused by the ‘normalisation of deviance’, 
a slow and gradual loosening of standards 
for the evaluation and acceptance of risk 
in an engineering context. This loosening 
happens because of organisational-cultural 
issues, and not because of blatant corrup-
tion or malafide intent. Challenger exploded 
73 seconds into its ascent because the ‘O 
rings’ on the rocket’s boosters broke on that 
unusually cold January morning; and yet, 
it was known for over a year that the rings 
would fail in cold weather. Vaughan found 
that how engineers, scientists, bureaucrats, 
and managers communicated and managed 
risky or faulty engineering was determined 
by the bureaucratic language or processes 
of NASA. It got hidden, reframed, minimised, 
second-guessed, and eventually buried. In 
unearthing it, Vaughan found a complicated 
chain of accountable actors.

Madeleine Elish and Tim Hwang ac-
knowledge multiple sites of potential respon-
sibility for crashes and ask, “how do we locate 
the network of human actors responsible for 
the actions of computational agents?” (22). 
Is it the car manufacturer that is responsi-
ble, or the software development team that 
programmed the car’s software? In the Tesla 
case, who is responsible? Is it the driver who 
lost his life because he misinterpreted what 

auto-pilot mode means, the computer vision 
software that wrongly categorised the side of 
a long truck trailer for the sky, or the manu-
facturer, Tesla, that did not pre-empt these 
possibilities? If all of these actors, and others 
not identified here, are somehow part of the 
story of how and why the crash happened, 
then how are they all to be held accountable 
and to what extent?

What is at stake in how accountability 
is assigned for crashes involving driver-less 
cars? In order to answer this question, this 
paper began by showing that assigning 
accountability in aviation crashes reveals a 
complex entanglement between the human 
operator and machine agent; and that, de-
spite increasing automation, humans are still 
held responsible for crashes. Next, taking 
this forward into the driverless car context, 
I make a detour into machine learning in 
driver-less car technology; from there I will 
discuss how machine learning is related to 
the application of the Trolley Problem and 
the Pascalian Wager, which are both used to 
construct an ‘ethics’ of autonomous driving. 
This will then allow me to show how software 
and big data are implicated in the consequent 
framing of ethics.

Computer vision and      
machine learning for        
accuracy in driver-less cars

The precision and accuracy of driver-less 
cars comes from software that ‘learns’ 
appropriate driving behaviour – merging, 
driving around construction zones, etc. – 
through exposure to large datasets that its 
algorithms are trained on. The combination 
of computer vision and machine learning is 
used so the car can detect objects, identify 
and categorise them, and rely on data it has 
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been ‘exposed’ to in order to make a decision 
about how to respond to objects and avoid 
accidents.

One of the most significant features 
of machine learning algorithms is that they 
determine patterns. Algorithms such as 
convolutional neural nets, that are used in 
driver-less car software use their pattern-
recognition ability to build internal models for 
identifying features of a dataset. Eventually, 
they can learn how those features are related 
without being explicitly programmed to do so 
(NVIDIA; Bojarski et al.). Another distinctive 
feature of machine learning more generally 
is that it is not always possible to open up 
the system and identify exactly how or why 
a decision was made to categorise and 
analyse something – machine learning is an 
inscrutable technology (Knight).

Rather than have to be ‘brute-force’ 
programmed, or ‘hard-coded’, to respond to 
every single possible situation it might en-
counter – a near impossible and exhausting 
software engineering exercise – driver-less 
car software uses machine learning to estab-
lish how to respond to unfamiliar situations 
through repeated practice (Google, Self 
Driving Car Project). An illustrative paral-
lel to the difference between hard-coded 
programming and machine learning exists in 
the history of computers programs that play 
‘perfect information games’, games where all 
information about the status of the game is 
available to all players. In the 1980s, Deep 
Blue was an IBM computer program that was 
brute-force programmed to play Chess; that 
is, every possible permutation and combina-
tion of moves that could be made on a 8×8 
board with 32 pieces was programmed. The 
ancient Chinese game of Go however has a 
far higher number of possible moves; it is a 
more complex game than Chess. So in the 
development of Alpha Go, the Google com-
puter program that plays Go, the algorithm 
looks at millions of games of Go, and discerns 

patterns in it. It can read which moves, and 
which combinations of moves, are more or 
less successful in achieving a winning out-
come and then it is able to enact those moves 
when playing a game (Hassabis, Alpha Go).

Driver-less cars have to learn how to 
identify objects so they know how to respond 
to them in a similar way. Cars are fitted with 
radar, LIDAR (‘light detection and ranging’) 
and other sensors with which to perceive the 
environment around them. Computer vision 
software identifies an object and breaks up 
that image into small parts: edges, lines, 
corners, colour gradients and so on. By look-
ing at billions of images, the neural nets in 
cars can identify patterns in how combina-
tions of parts come together to constitute 
different objects. The expectation is that 
such software can identify a ball, a cat, or 
a child, and make a decision about how to 
react based on the data received. Yet, this is 
a technology still in development and there is 
the possibility for much confusion. So, things 
that are yellow, or things that have faces and 
two ears on top of the head for instance, can 
be misread until the software sees enough 
examples that distinguish how things that 
are yellow, or things with two ears on the top 
of the head, are different from one another. 
In the case of the Tesla crash, the software 
misread the large expanse of the side of the 
trailer truck for the sky. It is possible that 
the machine learning was not well-trained 
enough to make the required distinction.

Depending on what the object is, the 
driver-less car is expected to respond: stop, 
go around it, wait for it, and so on. With in-
creasing exposure to good quality data, the 
software can distinguish between different 
kinds of objects and eventually make more 
fine-grained decisions. The more complex 
something is visually, without solid edges or 
curves or single colours – or if it is a fast, 
small, or flexible object on the road – the more 
difficult it is to understand. So, driver-less 
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car software is shown to have a so-called 
‘bicycle problem’ because bicycles are dif-
ficult to identify, are not a structured shape, 
and can move at different speeds (Fairley). 
Being able to identify objects on the road and 
assess their relative value in relation to each 
other has become a central aspect of the 
narrative around ethics in driver-less cars, 
which the paper now turns to.

Programming ethics in   
machines: Trolley problems 
and wagers

Ethics is assumed to be a framework for 
values governing appropriate actions in 
society; and often applied in situations that 
are difficult for the law to regulate, or where 
laws do not yet exist. ‘Machine ethics’, ‘infor-
mation ethics’, ‘computer ethics’, and ‘robot 
ethics’ are some overlapping fields that deal 
with ethics in contexts relevant to the present 
discussion, however it is beyond the scope 
of this paper to unpack each of these in more 
detail. Mike Ananny has identified three 
approaches to ethics in technology across 
these domains, and these tend to mirror 
consequentialist, Kantian (or, deontological), 
and virtue ethics: developing policies and 
regulations by codifying use of technologies, 
developing standards, best practices and 
anticipating future failures; anticipating the 
ethical outcomes of technologies and how 
they reconfigure social relationships; and 
investigating the values of designers and 
developers of these technologies (95).

In the context of driver-less cars, the 
accident is framed as a moment when a de-
cision has to be made by software about how 
to avoid it. This decision-making process is 
tantamount to ‘ethics’ and has been framed in 
terms of Kantian ethics and consequentialist 

ethics through the Trolley Problem, a popular 
shorthand for the discussion about ethics in 
driver-less car contexts (Lin; Google, Self 
Driving Car Project). In the world of the 
Trolley Problem, an autonomous vehicle is 
expected to learn to make the optimal choice 
in the case of the worst scenario imaginable 
– an autonomous vehicle being involved in 
the killing of human beings.

The Trolley Problem is a classic 
thought experiment developed by the Oxford 
philosopher, Philippa Foot in 1967, originally 
to discuss the permissibility of abortion. The 
Trolley problem is presented as a series 
of hypothetical situations with two or more 
negative outcomes, in which consequential-
ist or deontological approaches must be 
used to find a way to choose the lesser of 
two negative outcomes. The Trolley Problem 
is described by Judith Jarvis Thompson in 
the following way:

Suppose you are the driver of a 
trolley. The trolley rounds a bend, and 
there come into view ahead five track 
workmen, who have been repairing the 
track. The track goes through a bit of a 
valley at that point, and the sides are 
steep, so you must stop the trolley if 
you are to avoid running the five men 
down. You step on the brakes, but alas 
they don’t work. Now you suddenly see 
a spur of track leading off to the right. 
You can turn the trolley onto it, and 
thus save the five men on the straight 
track ahead. Unfortunately, Mrs. Foot 
has arranged that there is one track 
workman on that spur of track. He can 
no more get off the track in time than 
the five can, so you will kill him if you 
turn the trolley onto him. Is it morally 
permissible for you to turn the trolley?” 
(1395)
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Thompson goes on to describe ver-
sions of the Problem substituting track work-
men and the trolley with other characters 
and circumstances. Each version of The 
Trolley Problem necessitates a process of 
reasoning by invoking the tension between 
Kantian ethics, and consequentialist ethics: 
does how you arrive at the outcome matter 
more than the outcome itself? Is it more 
important to save more lives (a consequen-
tialist approach), or is it more important to 
consider how people die? (the deontological 
approach), and in which situations is one ap-
proach more valid than the other?

Patrick Lin has developed an applica-
tion of the Trolley Problem (as described by 
Bhargava and Kim 2017) as has  MIT’s Moral 
Machine Project. In the Lin version, the driver-
less car is in a situation where it has to decide 
which of two difficult options to select in order 
to save itself, such as having to either hit a 
cyclist wearing a helmet or one that is not; or 
decide what to do if a child runs out across a 
road; or how to rationalise potentially harm-
ing occupants of a car known to have poor 
crash test ratings. The Moral Machine Project 
is an online research exercise based on the 
Trolley Problem that serves as “a platform for 
1) building a crowd-sourced picture of human 
opinion on how machines should make deci-
sions when faced with moral dilemmas, and 
2) crowd-sourcing assembly and discussion 
of potential scenarios of moral consequence” 
(Rahwan, Bonnefon and Sharif). In this, the 
driver-less car has to select which kinds of 
humans to avoid hitting – children, pregnant 
women, older people, escaping thieves, ath-
letes, or animals like cats and dogs – in the 
case of brake failure.

Vikram Bhargava and Tae Wan Kim find 
however that the Trolley Problem does not 
address the fact that Kantian and consequen-
tialist cannot be resolved because they are 
not of the same kind of moral value (“value 
incommensurability”); that the Problem sets 

up a situation beset by moral uncertainty; 
that it does not afford a “view from nowhere”, 
meaning one that is ‘objective’. In such an 
objective view, say the authors, even the 
driver-less car should be factored in to the 
question of who or what should be saved 
in the case of an unavoidable crash; in the 
Trolley Problem, the driver-less car and its 
occupants are not assumed to be at risk in a 
crash, only pedestrians or other vehicles and 
drivers are. Instead Bhargava and Kim sug-
gest an application of the Pascalian Wager, 
along with a ranking system developed by 
Andrew Sepielli. In this, calculations to rank 
different outcomes of crashes are developed 
to arrive at an ‘objective’ choice. So, the 
cases of the car with failed brakes ramming 
into a child, an animal, or a helmet-wearing 
cyclist, or destroying itself to save others, are 
all given numerical rankings. An algebraic 
calculation processes these rankings to ar-
rive at the most mathematically objective 
outcome. The authors note that ethics tests 
properly applied in this way could help to 
establish accident claims under the law, and 
allow manufacturers to offer their customers 
a “moral navigation system”, much like a 
menu of Facebook’s privacy settings from 
a drop-down list; and manufacturers could 
generate crowdsourcing mechanisms to 
generate datasets of appropriate, and objec-
tive, decisions for machine learning (13-14).

There is a nuanced shift suggested by 
this scenario. If ‘ethics’ has become a series 
of computations that can be augmented by 
big data, then ethics – and thereby failures 
of ethics – is seen as a matter of individual 
morality rather than that of a group of indi-
viduals, organisations, laws, or other actants. 
Through application of the Trolley Problem, it 
is almost as if the car is imagined to be a 
sort of neoliberal, individualised, subject. As 
‘self driving’, it is imagined to be an individual 
moral agent that can act independently and 
efficiently on the basis of guidelines and 
feedback (Ganesh).
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It is possible that data currently being 
harvested about driver behaviour from a 
variety of sources – from highway cameras, 
police records, social media, insurance re-
cords, automotive engineering simulations, 
and so on – will be used to develop machine 
learning algorithms that will learn how to 
make decisions across different situations. 
Something to this effect has already been 
in development and testing as Anderson 
and Anderson discuss in their paper on the 
possibility of creating an ethical, intelligent 
machine agent. They cite an approach to 
applied ethics called casuistry: “the branch 
of applied ethics that, eschewing principle-
based approaches to ethics, attempts to 
determine correct responses to new ethical 
dilemmas by drawing conclusions based 
on parallels with previous cases in which 
there is agreement concerning the correct 
response” (20). This appears to be very 
much along the lines of machine-learning 
for decision-making discussed here. They 
cite work by Rzepka and Araki that identifies 
such an approach to machine ethics:

it might be safer to have machines 
“imitating millions, not a few,” believ-
ing in such “democracy-dependent 
algorithms” because, they contend, 
“most people behave ethically without 
learning ethics.” They propose… [to] 
search the web for opinions, usual 
behaviors, common consequences, 
and exceptions, by counting ethi-
cally relevant neighboring words and 
phrases, aligning these along a 
continuum from positive to negative 
behaviors, and subjecting this informa-
tion to statistical analysis. They sug-
gest that this analysis, in turn, would 
be helpful in the development of a sort 
of majority-rule ethics useful in guiding 
the behavior of autonomous systems.” 
(Anderson and Anderson 20)

However they do not discuss what the 
practical implications of this sort of applica-
tion are. For example, that crowdsourced 
datasets are neither ‘raw’ nor neutral, and 
import the  errors, biases, and the cultural 
and local contexts encoded in them. One of 
the ‘promises’ of big data is that of insight 
and prediction, a kind of ‘higher’ knowledge 
(boyd and Crawford). Something to that 
effect is being invoked here in pre-empting 
crashes. The idea that crash situations can 
be envisioned is, however, not entirely new 
to the automotive industry. In the 2000s car 
manufacturers began to invest large sums 
in mathematical modelling. Paul Leonardi 
cites Nigel Gale’s work in identifying “road 
to lab to math” as an industry-wide belief 
that mathematics-based simulations are 
more cost-efficient than road and laboratory 
testing:

Math is the next logical step in the 
process over testing on the road and 
in the lab. Math is much more cost 
effective because you don’t have to 
build pre-production vehicles and then 
waste them. We’ve got to get out in 
front of the technology so it doesn’t 
leave us behind. We have to live 
and breathe math. When we do that, 
we can pass the savings on to the 
consumer. (244)

Thinking outside black  
box ethics

In the development of driver-less cars we can 
see an ambition for the development of what 
James Moor refers to as an explicit ethical 
agent – one that is able to calculate the best 
action in an ethical dilemma – through big 
data technologies. In the development of ma-
chine intelligence towards this goal, a series 
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of shifts can be discerned: from accounting 
for crashes after the fact, to pre-empting 
them; from ethics that is about values, or rea-
soning, to ethics as crowdsourced, or based 
on statistics, and as the outcome of software 
engineering. Thus ethics-as-accountability 
moves towards a more opaque, narrow 
project, and away from the kinds of entan-
glements that scholars such as Galison and 
Vaughan identify.

Yet, as the Tesla crash indicates, if 
there was both an error in the computer 
vision and machine learning software, as 
well as a lapse on the part of the test driver 
who misunderstood what the term autopilot 
meant, then how are these two conditions to 
be understood as part of the dynamic that 
resulted in the crash? What is the relation-
ship between them? How might an ethics be 
imagined for this sort of crash that comes 
from an unfortunate entanglement of ma-
chine error and human error?

In a 2016 paper, Mike Ananny and Kate 
Crawford confront the idea of transparency 
as a mechanism for algorithmic account-
ability citing ten limitations of the idea of 
transparency, emphasising that “it is some-
times unnecessary and always insufficient 
to simply look inside structures”; but that 
the limitations of the idea of transparency 
could serve as a starting point for account-
ability (12-13). In this vein, I conclude with an 
agenda for future work.

In thinking about a framework for val-
ues, and in rethinking accountability, how 
can the multiple, parallel conditions present 
in driving be conceptualised? Rather than 
understanding an ‘ethics of driver-less cars’ 
to be a set of programmable rules for ap-
propriate action, could it instead be imagined 
as a process by which an assemblage of 
people, social groups, cultural codes, institu-
tions, regulatory standards, infrastructures, 
technical code, and engineering are framed 
in terms of their interaction? As Ananny 
notes:

In reality, technology ethics emerges 
from a mix of institutionalized codes, 
professional cultures, technological 
capabilities, social practices, and 
individual decision making. Indeed, 
ethical inquiry in any domain is not a 
test to be passed or a culture to be 
interrogated but a complex social and 
cultural achievement (Christians et al. 
2009). It entails anticipating how the 
intersecting dynamics of a sociotechni-
cal system—design, interpretation, 
use, deployment, value—‘‘matter’’ for 
the future (Marres 2007)—and figuring 
out how to hold these intersections 
accountable in light of an ethical 
framework. (96; emphasis in original)

In this conception, ethics is not just a 
end-point or outcome, but is something that 
can be imagined as a series of individual and 
system-level negotiations involving socio-
technical, technical, human and post-human 
relationships and exchanges. The more 
challenging and intriguing questions of how 
these actors and their inter-relationships are 
to be materialised and made visible are still 
to be answered, but perhaps we may start to 
discern the shape of the black box.
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Notes

[1] In a recent public event, AI Now, 
convened by the White House, ‘artificial 
intelligence’ was defined as a constellation 
of technologies that includes machine 
learning, natural language processing, and 
big data. This text ascribes to this definition 
of AI as a constellation.

[2] ‘Autonomous vehicles’, ‘self driving 
cars’, and ‘driver-less cars’ are all com-
monly used terms today referring to the 
same technology. There are five levels of 
autonomy in vehicles as defined by the 
United States’ National Traffic and Highway 
Safety Authority. At present, there is no fully 
autonomous vehicle in testing or operation, 
but it is Google’s ambition to create one. 
Tesla is working on a semi-autonomous 
vehicle. Traditional car manufacturers 
have been introducing increasing levels of 
autonomy in existing car models, such as 
adaptive parking, highway assist, or cruise 
control. Thus, this paper does not use the 
word ‘autonomous vehicles’ but uses the 
terms ‘driver-less cars’ or ‘self driving cars’ 
to refer to this technology.

[3] Both Google and its self-driving car 
project have undergone some changes in 
identity. Google is now known as Alphabet, 
and the self driving car project is called 
Waymo.
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